Silicon (Si) is one of the main biogenic elements in the aquatic ecosystem of lakes, significantly affecting the primary productivity of lakes. Lake sediment is an important sink of Si, which exists in different Si forms and will be released and participate in the recycling of Si when the sediment environment changes. Compared to carbon (C), nitrogen (N) and phosphorus (P), the understanding of different Si forms in sediments and their biogeochemical cycling is currently insufficient. Dianchi Lake, a typical eutrophic lake in southwest China, was selected as an example, and the contents of different Si forms and biogenic silicon (BSi), as well as their correlations with total organic carbon (TOC), total nitrogen (TN), and chlorophyll a in the surface sediments, were systematically investigated to explore Si’s recycling characteristics. The results showed that the coupling relationship of the four different Si forms in the surface sediments of Dianchi Lake was poor (p > 0.05), indicating that their sources were relatively independent. Moreover, their formation may be greatly influenced by the adsorption, fixation and redistribution of dissolved silicon by different lake substances. The contents of different Si forms in the surface sediments of Dianchi Lake were ranked as iron-manganese-oxide-bonded silicon (IMOF-Si) > organic sulfide-bonded silicon (OSF-Si) > ion-exchangeable silicon (IEF-Si) > carbonate-bound silicon (CF-Si). In particular, the contents of IMOF-Si and OSF-Si reached 2983.7~3434.7 mg/kg and 1067.6~1324.3 mg/kg, respectively, suggesting that the release and recycling of Si in surface sediments may be more sensitive to changes in redox conditions at the sediment–water interface, which become the main pathway for Si recycling, and the slow degradation of organic matter rich in OSF-Si may lead to long-term and continuous endogenous Si recycling. The low proportion (0.3~0.6%) and spatial differences of biogenic silicon (BSi) in the surface sediments of Dianchi Lake, as well as the poor correlation between BSi and TOC, TN, and chlorophyll a, indicated that the primary productivity of Dianchi Lake was still dominated by cyanobacteria and other algal blooms, while the relative abundance of siliceous organisms such as diatoms was low and closer to the central area of Dianchi Lake. Additionally, BSi may have a faster release capability relative to TOC and may participate in Si recycling.