Abstract:In this article, the weak-strong uniqueness principle is proved for the Euler-Poisson system in the whole space, with initial data so that the strong solution exists, and allowing for the density to assume vacuum states. Some results on Riesz potentials are used to justify the considered weak formulation. Then, one follows the relative energy methodology and, in order to handle the solution of Poisson's equation, employs the theory of Riesz potentials.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.