In this Research Topic, we aimed to develop our understanding of cognition by considering the diverse and dynamic relationship between the language we use, our bodily perceptions, and our actions and interactions in the broader environment. We received twenty-six articles that take very different approaches to exploring the question of how our bodies and the environment influence cognition.Several papers examine how perceptual concepts are developed and accessed. Gainotti (2012) reviews evidence from cognitive neuropsychology and proposes that different types of concepts differentially rely on sensorimotor experience, with somatosensory and movement information playing a major role in artifact representations and visual and other perceptual information playing a major role in the representation of living things. Krause et al. (2013) find an interference effect between fingers and numbers in a numerosity comparison task and suggest that it emerges from an embodied representation of number based on a shared metric for symbolic and tactile numerosities. Since perceptual stimulation sometimes interferes with and sometimes facilitates other conceptual processing Connell and Lynott (2012), review recent findings and propose that these differences arise due to the attentional demands on modality-specific processing. Two groups use event-related potentials to examine how perceptual information is accessed in conceptual tasks. Hald et al. (2013) find evidence for modality-specific grounded representations when processing negated sentences, and demonstrate differential modulation of the N400 according to whether or not a true vs. false sentence involves modality switching. Louwerse and Hutchinson (2012) show that different tasks rely on linguistic vs. perceptual information to different extents, with activation in linguistic cortical regions preceding activation in perceptual cortical regions when both types of processing were associated with the task.As well as perceptual information, motor information relating to action concepts was also a central topic. In a review of behavioral and neuroimaging work on semantics across different domains (e.g., concrete/abstract words, numbers, and arithmetic), Hauk and Tschentscher (2013) argue that the specific function of sensorimotor areas in processing meaning remains unclear, and suggest that only by employing a combination of methods can causal underpinnings be deduced. However, in their review, Tomasino and Rumiati (2013) contend that the strategy a participant employs in a task is more important than the nature of the stimulus in determining whether motor simulations will be activated and support the view that the motor system is implicated in-but not necessary to-semantic processing. Locatelli et al. (2012) provide evidence for the role of motor experience in motor semantics by demonstrating that action experience in the form of manual dexterity training facilitated subsequent performance in judging sentence-picture pairs that were related to the previously-learned actions. M...