Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. At the systemic as well as sub-cellular level, human aging has also been associated with diverse lipid alterations, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, we performed comprehensive multi-omics analyses and uncovered a role for a key PUFA biosynthesis gene,ELOVL2, in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies of bone marrow from agedElovl2mutant (enzyme-deficient) mice compared with age-matched controls revealed global down-regulation in lymphoid cell markers and expression of genes involved specifically in B cell development. Flow cytometric analyses of immune cell markers confirmed an aging-associated loss of B cell markers that was exacerbated in the bone marrow ofElovl2mutant mice and unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker of accelerated immune aging. Complementary lipidomic studies extended these findings to reveal select alterations in lipid species in aged andElovl2mutant mouse bone marrow samples, suggesting significant changes in the biophysical properties of cellular membranes. Furthermore, single cell RNA-seq analysis of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (<7%) of CD34+ HSPCs that expressesELOVL2in healthy adult bone marrow. This HSPC subset, along withCD79B-expressing lymphoid-committed cells, were almost completely absent in CD34+ cells isolated from elderly (>60 years old) bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in down-regulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
Organismal aging has been associated with diverse metabolic and functional changes across tissues. Within the immune system, key features of physiological hematopoietic cell aging include increased fat deposition in the bone marrow, impaired hematopoietic stem and progenitor cell (HSPC) function, and a propensity towards myeloid differentiation. This shift in lineage bias can lead to pre-malignant bone marrow conditions such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenias of undetermined significance (CCUS), frequently setting the stage for subsequent development of age-related cancers in myeloid or lymphoid lineages. At the systemic as well as sub-cellular level, human aging has also been associated with diverse lipid alterations, such as decreased phospholipid membrane fluidity that arises as a result of increased saturated fatty acid (FA) accumulation and a decay in n-3 polyunsaturated fatty acid (PUFA) species by the age of 80 years, however the extent to which impaired FA metabolism contributes to hematopoietic aging is less clear. Here, we performed comprehensive multi-omics analyses and uncovered a role for a key PUFA biosynthesis gene,ELOVL2, in mouse and human immune cell aging. Whole transcriptome RNA-sequencing studies of bone marrow from agedElovl2mutant (enzyme-deficient) mice compared with age-matched controls revealed global down-regulation in lymphoid cell markers and expression of genes involved specifically in B cell development. Flow cytometric analyses of immune cell markers confirmed an aging-associated loss of B cell markers that was exacerbated in the bone marrow ofElovl2mutant mice and unveiled CD79B, a vital molecular regulator of lymphoid progenitor development from the pro-B to pre-B cell stage, as a putative surface biomarker of accelerated immune aging. Complementary lipidomic studies extended these findings to reveal select alterations in lipid species in aged andElovl2mutant mouse bone marrow samples, suggesting significant changes in the biophysical properties of cellular membranes. Furthermore, single cell RNA-seq analysis of human HSPCs across the spectrum of human development and aging uncovered a rare subpopulation (<7%) of CD34+ HSPCs that expressesELOVL2in healthy adult bone marrow. This HSPC subset, along withCD79B-expressing lymphoid-committed cells, were almost completely absent in CD34+ cells isolated from elderly (>60 years old) bone marrow samples. Together, these findings uncover new roles for lipid metabolism enzymes in the molecular regulation of cellular aging and immune cell function in mouse and human hematopoiesis. In addition, because systemic loss of ELOVL2 enzymatic activity resulted in down-regulation of B cell genes that are also associated with lymphoproliferative neoplasms, this study sheds light on an intriguing metabolic pathway that could be leveraged in future studies as a novel therapeutic modality to target blood cancers or other age-related conditions involving the B cell lineage.
Childhood is critical for hematopoietic development and the onset of hematologic diseases. To explore hematopoietic changes from infancy through adolescence, we generated a multi-modal single-cell atlas capturing mRNA and surface protein expression of 90.710 bone marrow (BM) cells. This includes hematopoietic stem/progenitor cells and mesenchymal stromal cells, from seven pediatric individuals and two young adults. We demonstrate that young pediatric BM is distinct from adolescents/young adults (AYA), shifting from B-lineage dominance in early childhood to myeloid and T-lineage bias in adolescence. We uncover two distinct lymphoid progenitors (LyPs) subsets regulating this shift: CD127-positive LyPs with B-lineage output, most abundant in early childhood, and CD127-negative LyPs with lymphoid and myeloid features, more common in AYAs. Age-related changes in stromal composition and signaling, mediated by IL-7 and TGF-β1, correspond with this lineage shift. This study provides an in-depth resource for understanding healthy hematologic development and potential early-life perturbations underlying pediatric hematologic diseases.
Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs. Remarkably, recombinant PF4 administration restored old HSCs to youthful functional phenotypes characterized by improved cell polarity, reduced DNA damage, enhanced in vivo reconstitution capacity, and balanced lineage output. Mechanistically, we identified LDLR and CXCR3 as the HSC receptors transmitting the PF4 signal, with double knockout mice showing exacerbated HSC aging phenotypes similar to PF4-deficient mice. Furthermore, human HSCs across various age groups also respond to the youthful PF4 signaling, highlighting its potential for rejuvenating aged hematopoietic systems. These findings pave the way for targeted therapies aimed at reversing age-related HSC decline with potential implications in the prevention or improvement of the course of age-related hematopoietic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.