Brachypodium distachyon has emerged as a model system for forage grass and cereal grain species. Here, we report B. distachyon pollen development at the ultrastructural level. The process of microsporogenesis and microgametogenesis in B. distachyon follows the typical angiosperm pollen development sequence. Pronounced evaginations of the nuclear envelope are observed prior to meiosis, indicating active nucleocytoplasmic exchange processes. The microspore mother cells undergo meiosis and subsequent cytokinesis, forming isobilateral tetrads. Following dissolution of the callose wall and release of free and vacuolated microspores, mitotic divisions lead to the formation of mature, three-celled pollen grains. In B. distachyon, pollen wall formation begins at the tetrad stage by the formation of the exine template (primexine). The exine is tectate-columellate, comprising a foot layer and endexine. Development of the tectum and the foot layer is complete by the free microspore stage of development, with the tectum formed discontinuously. The endexine initiates in the free microspore stage but becomes compressed in mature grains. The intine layer is deposited after mitosis and comprises three layers during the mature pollen stage of development. Pore development initiates during early free microspore development stage and Brachypodium pollen has a single germination pore consisting of a slightly raised annulus surrounding a central operculum. The tapetum is of the secretory type with loss of the tapetal cell walls beginning at about the time of microsporocyte meiosis. This is the first report on ultrastructure of microsporogenesis and microgametogenesis in B. distachyon. In general, Brachypodium microsporogenesis and microgametogenesis conform to a typical grass pollen development pattern.