The 4f-4f emission of Tb(III), Eu(III), and Sm(III) complexes plays an important role in the design of monochromatic green, red, and deep-red luminescent materials for displays, lighting, and sensing devices. The 4f-4f emission of Yb(III), Nd(III), and Er(III) complexes is observed in the near-infrared (IR) region for bioimaging and security applications. However, their absorption coefficients are extremely small (ε < 10 L mol −1 cm −1 ). In this review, photosensitized luminescent lanthanide(III) complexes containing organic chromophores (ligands) with large absorption coefficients (ε > 10,000 L mol −1 cm −1 ) are introduced. Organic molecular design elements, including (1) the control of the excited triplet (T 1 ) state, (2) the effects on the charge-transfer (CT) band, and (3) the energy transfer from metal ions for effective photosensitized luminescence, are explained. The characteristic electrosensitized luminescence (electroluminescence) and mechanoluminescence (triboluminescence) of lanthanide(III) complexes are also explained. Lanthanide(III) complexes with well-designed organic molecules are expected to open avenues of research among the fields of chemistry, physics, electronics, and material science.