Obesity and eating disorders are widespread in Western societies. Both the increased availability of highly palatable foods and dieting are major risk factors contributing to the epidemic of disorders of feeding. The purpose of this study was to characterize an animal model of maladaptive feeding induced by intermittent access to a palatable diet alternation in mice. In this study, mice were either continuously provided with standard chow food (Chow/Chow), or provided with standard chow for 2 days and a high-sucrose, palatable food for 1 day (Chow/Palatable). Following stability of intake within the cycling paradigm, we then investigated the effects of several pharmacological treatments on excessive eating of palatable food: naltrexone, an opioid receptor antagonist, SR141716A, a cannabinoid-1 receptor antagonist/inverse agonist, and BD-1063, a sigma-1 receptor antagonist. Over successive cycles, Chow/Palatable mice showed an escalation of palatable food intake within the first hour of renewed access to palatable diet and displayed hypophagia upon its removal. Naltrexone, SR141716A, and BD-1063 all reduced overconsumption of palatable food during this first hour. Here we provide evidence of strong face and convergent validity in a palatable diet alternation model in mice, confirming multiple shared underlying mechanisms of pathological eating across species, and thus making it a useful therapeutic development tool.