Anthropogenic sound is increasingly considered a major environmental issue, but its effects are relatively unstudied. Organisms may be directly affected by anthropogenic sound in many ways, including interference with their ability to detect mates, predators, or food, and disturbances that directly affect one organism may in turn have indirect effects on others. Thus, to fully appreciate the net effect of anthropogenic sound, it may be important to consider both direct and indirect effects. We report here on a series of experiments to test the hypothesis that anthropogenic sound can generate cascading indirect effects within a community. We used a study system of lady beetles, soybean aphids, and soybean plants, which are a useful model for studying the direct and indirect effects of global change on food webs. For sound treatments, we used several types of music, as well as a mix of urban sounds (e.g., sirens, vehicles, and construction equipment), each at volumes comparable to a busy city street or farm tractor. In 18‐hr feeding trials, rock music and urban sounds caused lady beetles to consume fewer aphids, but other types of music had no effect even at the same volume. We then tested the effect of rock music on the strength of trophic cascades in a 2‐week experiment in plant growth chambers. When exposed to music by AC/DC, who articulated the null hypothesis that “rock and roll ain't noise pollution” in a song of the same name, lady beetles were less effective predators, resulting in higher aphid density and reduced final plant biomass relative to control (no music) treatments. While it is unclear what characteristics of sound generate these effects, our results reject the AC/DC hypothesis and demonstrate that altered interspecific interactions can transmit the indirect effects of anthropogenic noise through a community.