It seems intuitively obvious that active exploration of a new environment will lead to better spatial learning than will passive exposure. However, the literature on this issue is decidedly mixed-in part, because the concept itself is not well defined. We identify five potential components of active spatial learning and review the evidence regarding their role in the acquisition of landmark, route, and survey knowledge. We find that (1) idiothetic information in walking contributes to metric survey knowledge, (2) there is little evidence as yet that decision making during exploration contributes to route or survey knowledge, (3) attention to place-action associations and relevant spatial relations contributes to route and survey knowledge, although landmarks and boundaries appear to be learned without effort, (4) route and survey information are differentially encoded in subunits of working memory, and (5) there is preliminary evidence that mental manipulation of such properties facilitates spatial learning. Idiothetic information appears to be necessary to reveal the influence of attention and, possibly, decision making in survey learning, which may explain the mixed results in desktop virtual reality. Thus, there is indeed an active advantage in spatial learning, which manifests itself in the task-dependent acquisition of route and survey knowledge.