The actin 2/3 complex (Arp2/3) regulates actin polymerization and nucleation of actin filaments, is associated with cell motility, and has been shown to play a key role in the invasion and migration of cancer cells. nucleation-promoting factor (NPF) such as N-WASP (neural-WASP famly verprolin-homologous protein family), WAVE (WASP famly verprolin-homologous protein family), and WASH (WASP and Scar homologue) undergo conformational changes upon receipt of multiple upstream signals including Rho family GTPases,
cdc42
(Cell division control protein 42 homolog), and phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5 P2) to bind and activate the Arp2/3 complex. Once activated, the Arp2/3 complex forms actin-based membrane protrusions necessary for cancer cells to acquire an invasive phenotype. Therefore, how to influence the invasion and migration of cancer cells by regulating the activity of the Arp2/3 complex has attracted great research interest in recent years. Several studies have explored the effects of phosphorylation modifications of cortactin and several NPFs (Nucleation Promoting Factor) including N-WASP and WAVE on the activity of the Arp2/3 complex and ultimately on cancer cell invasiveness, and have attempted to suggest new strategies for antiinvasive therapy as a result. Other studies have highlighted the potential of targeting genes encoding partial or complete proteins of the Arp2/3 complex as a therapeutic strategy to prevent cancer cell invasion and metastasis. This article reviews the role of the Arp2/3 complex in the development, invasion, and metastasis of different types of cancer and the mechanisms regulating the activity of the Arp2/3 complex.