SHORT ABSTRACT
Meiosis is the developmental process by which gametes are formed through a single round of DNA replication and two successive rounds of chromosome segregation. Mammalian meiosis can be examined by utilizing a technique to prepare meiotic chromosome spreads. Here we demonstrate a method of preparing surface-spread nuclei from mouse spermatocytes.
LONG ABSTRACT
Mammalian meiosis is a dynamic developmental process that occurs in germ cells and can be studied and characterized. Using a method to spread nuclei on the surface of slides (rather than dropping them from a height), we demonstrate an optimized technique on mouse spermatocytes that was first described in 1997. This method is widely used in laboratories to study mammalian meiosis because it yields a plethora of high quality nuclei undergoing substages of prophase I. Seminiferous tubules are first placed in a hypotonic solution to swell spermatocytes. Then spermatocytes are released into a sucrose solution to create a cell suspension, and nuclei are spread onto fixative-soaked glass slides. Following immunostaining, a diversity of proteins germane to meiotic processes can be examined. For example, proteins of the synaptonemal complex, a tripartite structure that connects the chromosome axes/cores of homologs together can be easily visualized. Meiotic recombination proteins, which are involved in repair of DNA double-strand breaks by homologous recombination, can also be immunostained to evaluate progression of prophase I. Here we describe and demonstrate in detail a technique widely used to study mammalian meiosis in spermatocytes from juvenile or adult male mice.