The linear ubiquitin chain assembly complex (LUBAC) ubiquitin ligase complex, composed of HOIL-1L–interacting protein (HOIP), heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), and SHANK-associated RH domain protein, specifically generates linear polyubiquitin chains and is involved in NF-κB activation. Lack of SHANK-associated RH domain protein, which drastically reduces the amount of HOIP and HOIL-1L, causes chronic proliferative dermatitis (cpdm) in mice. Impaired NF-κB activation and augmented apoptosis have been implicated in the pathogenesis of cpdm in mice. In this study, we found that IFN-γ increased the amount of LUBAC by inducing HOIP and HOIL-1L mRNA transcription and enhanced the signal-induced NF-κB activation in embryonic fibroblasts, keratinocytes, and bone marrow–derived macrophages from wild-type and/or cpdm mice; however, IFN-γ failed to augment NF-κB activation in mouse embryonic fibroblasts lacking linear polyubiquitination activity of LUBAC. Moreover, s.c. injection of IFN-γ for 3 wk into the skin of cpdm mice increased the amount of HOIP, suppressed apoptosis, and ameliorated the dermatitis. Inhibition of keratinocyte apoptosis by IFN-γ injection suppressed neutrophil, macrophage, and mast cell infiltration and the amount of TNF-α in the skin of cpdm mice. Similarly, IFN-α also enhanced the amount of HOIP as well as NF-κB activation, inhibited apoptosis, and ameliorated cpdm dermatitis. These results indicate that the IFNs enhance NF-κB activation and ameliorate cpdm dermatitis by augmenting expression of HOIP and HOIL-1L and linear polyubiquitination activity of LUBAC.