Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximatesin vivo-like niche spacing and dynamic tubule tip rearrangement, as well asin vivo-like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)-REarranged duringTransfection (RET) tyrosine kinase signaling. We find that the concentration of the embedding matrix influences the number of nephrons per ureteric bud (UB) tip and the spacing between tips. To isolate the effect of specific material properties on explant development, we introduce engineered acrylated hyaluronic acid hydrogels that allow independent tuning of stiffness and adhesion. We find that sufficient stiffness and adhesion are both required to maintain kidney shape. Matrix stiffness has a “Goldilocks effect” on the nephron per UB tip balance centered at ∼2 kPa, while higher matrix adhesion increases nephron per UB tip ratio. Our technique captures large-scale,in vivo-like tissue morphogenesis in 3D, providing a platform suited to contrasting normal and congenital disease contexts. Moreover, understanding the impact of boundary condition mechanics on kidney development benefits fundamental renal research and advances the engineering of next-generation kidney replacement tissues.
Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximatesin vivo-like niche spacing and dynamic tubule tip rearrangement, as well asin vivo-like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)-REarranged duringTransfection (RET) tyrosine kinase signaling. We find that the concentration of the embedding matrix influences the number of nephrons per ureteric bud (UB) tip and the spacing between tips. To isolate the effect of specific material properties on explant development, we introduce engineered acrylated hyaluronic acid hydrogels that allow independent tuning of stiffness and adhesion. We find that sufficient stiffness and adhesion are both required to maintain kidney shape. Matrix stiffness has a “Goldilocks effect” on the nephron per UB tip balance centered at ∼2 kPa, while higher matrix adhesion increases nephron per UB tip ratio. Our technique captures large-scale,in vivo-like tissue morphogenesis in 3D, providing a platform suited to contrasting normal and congenital disease contexts. Moreover, understanding the impact of boundary condition mechanics on kidney development benefits fundamental renal research and advances the engineering of next-generation kidney replacement tissues.
IntroductionThe lymphatic system is a multifaceted regulator of tissue homeostasis and an integral part of immune responses. Previous studies had shown that subsets of lymphatic endothelial cells (LEC) express PTX3, an essential component of humoral innate immunity and tissue homeostasis.MethodsIn the present study using whole-mount imaging and image-based morphometric quantifications, Ptx3-targeted mice and in vivo functional analysis, we investigated the involvement of PTX3 in shaping and function of the lymphatic vasculature.ResultsWe found that PTX3 is localized in the extracellular matrix (ECM) surrounding human and murine lymphatic vessels (LV). In murine tissues, PTX3 was localized in the ECM close to LV terminals and sprouting. Ptx3-deficient mice showed LV abnormalities in the colon submucosa and diaphragm, including a disorganized pattern and hyperplasia of initial LV capillaries associated with altered distribution of tight junction-associated molecules. Mice with LEC-restricted PTX3 gene inactivation showed morphological and organization abnormalities similar to those observed in Ptx3-deficient animals. Ptx3-deficient mice showed defective fluid drainage from footpads and defective dendritic cell (DC) trafficking.DiscussionThus, PTX3 is strategically localized in the ECM of specialized LV, playing an essential role in their structural organization and immunological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.