Rab11 and its effectors dRip11 and MyoV are essential for polarized post-Golgi vesicle trafficking to photosensitive membrane rhabdomeres in Drosophila photoreceptors. Here, we found that Parcas (Pcs), recently shown to have guanine-nucleotide-exchange (GEF) activity toward Rab11, co-localizes with Rab11 on the trans-side of Golgi units and post-Golgi vesicles at the base of the rhabdomeres in pupal photoreceptors. Pcs fused with the EM-tag APEX2 localizes on 150-300 nm vesicles at the trans-side of Golgi units, which are presumably fly recycling endosomes (RE). Loss of Pcs impairs Rab11 localization on the trans-side of Golgi units and induces the cytoplasmic accumulation of post-Golgi vesicles bearing rhabdomere proteins, as observed in Rab11-deficiency. In contrast, loss of the specific subunits of TRAPPII, another known Rab11-GEF, does not cause any defects on the eye development nor the transport of rhabdomere proteins, however, simultaneous loss of TRAPPII and Pcs shows severe defects on eye development. These results indicated that in pupal photoreceptors, Pcs is the predominant Rab11-GEF, and TRAPPII performs a function that is redundant but subsidiary to that of Pcs.