We mapped the Soi crater region at 1:800,000 scale and produced a geomorphological map using methodology presented by Malaska, Lopes, Williams, et al. (2016), https://doi.org/10.1016/j.icarus.2016.02.021 and Schoenfeld et al. (2021), https://doi.org/10.1016/j.icarus.2021.114516. This region spans longitude 110° to 180°W and latitude 0° to 60°N and is representative of the transition between the equatorial, mid‐latitude, and high‐latitude northern regions of Titan. We used Cassini Synthetic Aperture Radar (SAR) as our primary mapping data set. For areas where SAR was not available, we used lower resolution data from the Imaging Science Subsystem, the Visible and Infrared Mapping Spectrometer, radiometry, and high‐altitude SAR for complete mapping coverage of the region. We identified 22 geomorphological units, 3 of which have been discussed in existing literature but have not yet been incorporated into our mapping investigations. These include sharp‐edged depressions (bse), ramparts (brh), and bright gradational plains (pgh). All six major terrain classes are represented in this region: Craters, Labyrinth, Hummocky/mountainous, Plains, Dunes, and Basin and Lakes. We find that plains dominate the surface of the Soi crater region, comprising ∼73% of the mapped area, followed by dunes (∼14%), mountains/hummocky terrains (∼12%), basin and lakes (∼0.7%), labyrinth terrains (∼0.5%), and crater terrains (∼0.4%). We also observe empty lakes as far south as 40°N. The Soi crater region largely has the same collection and proportion of geomorphological units to other mapped regions on Titan. These results further support the hypothesis that surface processes are, broadly speaking, the same across Titan's middle and equatorial latitudes, with the exception of Xanadu.