ABSTRACT. Resistive force exerted by the Crary Ice Rise on its ice-shelf/ice-stream environment and backpressure force transmitted across the grounding lines of Ice Streams A and B are calculated from airborne radio echo-sounding data and measurements of surface strain-rates. Resistance generated by the ice rise ranges in magnitude between 45 and 51% of the back-pressure force on the ice streams (depending on the flow law). The mechanical-energy budget of the ice rise is computed by considering work done against frictional forces at the perimeter of the ice rise and gravitational potential energy fluxes associated with changing mass distribution in the ice/ocean system. Energy dissipated by flow surrounding the ice rise is balanced by potential energy released within Ice Streams A and B, and accounts for between 15 and 49% of the work done by the ice streams against ice-shelf back pressure at their grounding lines. Mass balance of the ice rise, and the discharge of Ice Streams A and B, are calculated from surface-velocity and snow-accumulation measurements. The ice rise and its immediate environment gain mass by advection and snowfall at a rate equivalent to an area-averaged thickening rate of 0.44 ± 0.06 m/year. This mass gain may be balanced by regional basal melting (which we do not measure), or could contribute to ice-rise expansion through regional thickening and ice-shelf grounding. Approximately 1/4 to 1/2 of the excess volume discharged by Ice Streams A and B above snow accumulation in their catchment areas is deposited in the vicinity of the ice rise (or melted from the bottom of the ice shelf). This suggests that the ice rise may have formed as a consequence of recent ice-stream acceleration, and that its continued growth may eventually reverse this trend of ice-stream discharge.