CbrA is an atypical sensor kinase found in Pseudomonas. The autokinase domain is connected to a putative transporter of the sodium/solute symporter family (SSSF). CbrA functions together with its cognate response regulator, CbrB, and plays an important role in nutrient acquisition, including regulation of hut genes for the utilization of histidine and its derivative, urocanate. Here we report on the findings of a genetic and biochemical analysis of CbrA with a focus on the function of the putative transporter domain. The work was initiated with mutagenesis of histidine uptake-proficient strains to identify histidine-specific transport genes located outside the hut operon. Genes encoding transporters were not identified, but mutations were repeatedly found in cbrA. This, coupled with the findings of [ 3 H]histidine transport assays and further mutagenesis, implicated CbrA in histidine uptake. In addition, mutations in different regions of the SSSF domain abolished signal transduction. Site-specific mutations were made at four conserved residues: W55 and G172 (SSSF domain), H766 (H box), and N876 (N box). The mutations W55G, G172H, and N876G compromised histidine transport but had minimal effects on signal transduction. The H766G mutation abolished both transport and signal transduction, but the capacity to transport histidine was restored upon complementation with a transport-defective allele of CbrA, most likely due to interdomain interactions. Our combined data implicate the SSSF domain of CbrA in histidine transport and suggest that transport is coupled to signal transduction.
IMPORTANCENutrient acquisition in bacteria typically involves membrane-bound sensors that, via cognate response regulators, determine the activity of specific transporters. However, nutrient perception and uptake are often coupled processes. Thus, from a physiological perspective, it would make sense for systems that couple the process of signaling and transport within a single protein and where transport is itself the stimulus that precipitates signal transduction to have evolved. The CbrA regulator in Pseudomonas represents a unique type of sensor kinase whose autokinase domain is connected to a transporter domain. We present genetic and biochemical evidence that suggests that CbrA plays a dual role in histidine uptake and sensing and that transport is dependent on signal transduction.T he ability to recognize and convert external environmental stimuli into appropriate physiological responses is of fundamental importance for all organisms. In bacteria, signal transduction is predominantly mediated by two-component regulatory systems (TCSs) consisting of a sensor kinase (SK) and a cognate response regulator (RR) (1, 2). Both proteins are typically composed of two distinct functional domains (3): a variable N-terminal signal input domain and a conserved C-terminal autokinase domain for the SK and a conserved N-terminal receiver (Rec) domain and a variable C-terminal output domain for the RR. Signal transduction is achieved via ph...