Despite the limitations of genetic bottlenecks, several invasive species appear to thrive in non-native ranges with extremely low levels of sequence-based genetic variation. We previously demonstrated differentiation of DNA methylation to habitat types of the highly clonal, genetically depauperate Japanese knotweeds using anonymous markers. The functional relevance of this DNA methylation variation is unknown. Here, we sequenced the full transcriptome combined with a reduced representation bisulfite sequencing approach, epigenotyping by sequencing (epiGBS), to characterize the association among DNA methylation, functional transcripts and the diverse habitat types occupied by the invasive Reynoutria species. We identified 50,435 putative transcripts overall, of which 48,866 were annotated with the NCBI NR database. Of these 17,872 (35%) and 16,122 (32%) transcripts shared sequence identity with Arabidopsis thaliana and Beta vulgaris, respectively. We found genetic differentiation by habitat type suggesting the action of selection and a marginal pattern of differentiation of DNA methylation among habitats, which appears to be associated with sequence differences. However, we found no outlier methylation loci, limiting our ability to make functional interpretations. Still, the patterns of genetic diversity may already reflect response to selection among habitat types. Regardless of the source of variation in DNA methylation, these changes may represent an important component of the response to environmental conditions, particularly in highly clonal plants, but more fine scale genomics analysis is required.