2008
DOI: 10.3367/ufnr.0178.200811a.1129
|View full text |Cite
|
Sign up to set email alerts
|

The search for dark matter particles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
14
0
1

Year Published

2009
2009
2020
2020

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 29 publications
(15 citation statements)
references
References 247 publications
0
14
0
1
Order By: Relevance
“…The power spectrum of the potential is described by a formula similar to Eqn (7), but with A Φ = (4/9)A R [2]. Although it is possible to use δ ≃ δ eq (t/t eq ) 2/3 for estimates, expression (12) gives a more precise result because the transition to the dust-like stage with the equation of state p = 0 takes some time. At t ≫ t eq , the nonlinear stage of the evolution of perturbations is described by Eqn (11) without the last two terms in the right-hand side and with M BH = 0:…”
Section: Spherical Model Of the Evolution Of Perturbationsmentioning
confidence: 99%
“…The power spectrum of the potential is described by a formula similar to Eqn (7), but with A Φ = (4/9)A R [2]. Although it is possible to use δ ≃ δ eq (t/t eq ) 2/3 for estimates, expression (12) gives a more precise result because the transition to the dust-like stage with the equation of state p = 0 takes some time. At t ≫ t eq , the nonlinear stage of the evolution of perturbations is described by Eqn (11) without the last two terms in the right-hand side and with M BH = 0:…”
Section: Spherical Model Of the Evolution Of Perturbationsmentioning
confidence: 99%
“…It is clear from (2) that the Λ − term, even in the absence of matter ( = 0), changes the spacetime geometry and Λ is the energy-momentum tensor of the vacuum. 1 In the vacuum, the Einstein equations take the form:…”
Section: Einstein's Equations and De Sitter's Solutionsmentioning
confidence: 99%
“…Using stereographic projections: These spaces have global symmetry groups SO (4,1) and SO (3,2) that leave the metrics (7)-(8) invariant. Groups SO (4,1) and SO (3,2) are called de Sitter groups. Spaces (5), (7) and (6), (8) are called de Sitter worlds of the 1st and 2nd kind or according to the modern terminology, de Sitter worlds dS and antide Sitter AdS, respectively.…”
Section: Einstein's Equations and De Sitter's Solutionsmentioning
confidence: 99%
See 1 more Smart Citation
“…В противоположность этому пары квинт + антиквинт образуют тёмную материю, участвующую в гравитационных взаимодействиях, и их можно пытаться обнаружить в каких-либо опытах. К настоящему времени опубликовано множество ра-бот, содержащих обширные списки различных гипотетических частиц -кандидатов в тёмную материю [5][6], которые можно пытаться обнаружить на опытах. Странно, что в этих статьях совсем не говорит-ся о возможной связи между тёмной материей и темной энергией.…”
Section: поиски частиц тёмной энергииunclassified