The CB1 cannabinoid receptor mediates many of the psychoactive effects of ⌬ 9 THC, the principal active component of cannabis. However, ample evidence suggests that additional non-CB 1/CB2 receptors may contribute to the behavioral, vascular, and immunological actions of ⌬ 9 THC and endogenous cannabinoids. Here, we provide further evidence that GPR55, a G protein-coupled receptor, is a cannabinoid receptor. GPR55 is highly expressed in large dorsal root ganglion neurons and, upon activation by various cannabinoids (⌬ 9 THC, the anandamide analog methanandamide, and JWH015) increases intracellular calcium in these neurons. Examination of its signaling pathway in HEK293 cells transiently expressing GPR55 found the calcium increase to involve G q, G12, RhoA, actin, phospholipase C, and calcium release from IP 3R-gated stores. GPR55 activation also inhibits M current. These results establish GPR55 as a cannabinoid receptor with signaling distinct from CB 1 and CB2.orphan ͉ pain ͉ CB3 ͉ G protein-coupled receptor C annabis has been used and abused for its therapeutic and psychoactive properties for millennia. The effects of cannabinoid compounds are largely mediated by cannabinoid receptors. CB 1 , cloned in 1990 (1), is widely and highly expressed in the CNS, where it likely mediates the majority of the psychotropic and behavioral effects of cannabinoids. CB 2 is primarily expressed in peripheral tissues (2). Both CB 1 and CB 2 are 7-transmembrane G protein-coupled receptors that engage predominantly the G i/o family of G proteins. However, ample evidence suggests that additional receptors may contribute to the behavioral, vascular, and immunological actions of ⌬ 9 tetrahydrocannabinol (THC) and endogenous cannabinoids (3).It has been suggested that GPR55 is a novel cannabinoid receptor (reviewed in ref. 4). GPR55 is only 13.5% identical to CB 1 and 14.4% identical to CB 2 , and its mRNA is present in the brain and periphery (5-7). A recent study found that a variety of cannabinoid compounds stimulated GTP␥S binding in cells stably expressing GPR55 (6). Here, we report GPR55 activation by THC, JWH015, and anandamide increases intracellular calcium by activating signaling pathways quite distinct from those used by CB 1 and CB 2 .
Results
Activation of GPR55 by Cannabinoids Increases Intracellular Calcium.We first examined the signaling pathways activated by GPR55 in HEK293 cells transiently expressing human GPR55 (hGPR55). Perfusion with 5 M THC evoked a calcium increase (⌬[Ca 2ϩ ] i ) averaging Ϸ100 nM (n ϭ 7, Fig. 1 A and B). Perfusion with 3 M THC evoked a more modest increase (n ϭ 5, 50 nM; Fig. 1B). The agonist-induced calcium response was present in all cells tested, but because it varied in magnitude and time course, concurrent controls were always conducted. GPR55 was essential for the THC-evoked calcium rise because there was minimal calcium rise in nontransfected HEK293 cells exposed to 5 M THC (n ϭ 6, Fig. 1 A and B). A similar calcium increase was seen in CHO cells stably expressing hGPR55 (data not show...