2022
DOI: 10.2140/pjm.2022.316.249
|View full text |Cite
|
Sign up to set email alerts
|

The second best constant for the Hardy–Sobolev inequality on manifolds

Abstract: We consider the second best constant in the Hardy-Sobolev inequality on a Riemannian manifold. More precisely, we are interested with the existence of extremal functions for this inequality. This problem was tackled by Djadli-Druet [5] for Sobolev inequalities. Here, we establish the corresponding result for the singular case. In addition, we perform a blow-up analysis of solutions Hardy-Sobolev equations of minimizing type. This yields informations on the value of the second best constant in the related Riema… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 20 publications
0
0
0
Order By: Relevance