The development of hub and casing boundary layers through a turbomachine is difficult to predict, giving rise to uncertainty in the boundary conditions experienced by each blade row. Previous studies in turbine cascades disagree on the sensitivity of endwall loss to such inlet conditions. This paper explores the problem computationally, by examining a large number of turbine cascades and varying the inlet boundary layer thickness.
It is demonstrated that the sensitivity of endwall loss to inlet conditions is design dependent, and determined by the component of endwall loss associated with the secondary flow. This Secondary-Flow-Induced loss is characterised by a vorticity factor based on classical secondary flow theory. Designs that produce high levels of secondary vorticity tend to generate more loss and are more sensitive to inlet conditions. This sensitivity is largely driven by the dissipation of Secondary Kinetic Energy (SKE): thickening the inlet boundary layer causes the secondary vorticity at the cascade exit to be more dispersed within the passage, resulting in larger secondary flow structures with higher SKE. The effects are captured using a simple streamfunction model based on classical secondary flow theory, which has potential for preliminary design and sensitivity assessment.