We define the ordinary Minkowski space inside the conformal space according to Penrose and Manin as homogeneous spaces for the Poincaré and conformal group respectively. We realize the supersymmetric (SUSY) generalizations of such homogeneous spaces over the complex and the real fields. We finally investigate chiral (antichiral) superfields, which are superfields on the super Grassmannian, Gr(2|1, 4|1), respectively on Gr(2|0, 4|1). They ultimately give the twistor coordinates necessary to describe the conformal superspace as the flag Fl(2|0, 2|1; 4|1) and the Minkowski superspace as its big cell.