Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction. Acoustic profiling is a conventional method for studying the geological structure of the seabed. To this end, a low-frequency acoustic profiler with an operating frequency range of 1…14 kHz can be used. However, under lower operating frequencies, the difficulty of achieving the required resolution arises. The problem of improving the angular resolution of a hydroacoustic device, particularly in the direction of the carrier movement, remains to be a priority task in the search and detection of objects on the seabed, as well as the study of the bottom soil structure. Angular resolution can be improved through several approaches, including an algorithm for synthesizing the antenna aperture based on the law of the phase change of the reflected signal. This approach is relevant in the design of highresolution hydroacoustic tools.Aim. To demonstrate the possibility of constructing a bottom soil profiling device, as well as the possibility of increasing its angular resolution based on an algorithm for synthesizing the antenna aperture of an acoustic profiler.Materials and methods. The study employed the groundwork data obtained for side-scan sonars with a synthetic aperture in terms of constructing an antenna device and the methods of radio-wave excitation developed for radar systems.Results. The possibility of synthesizing the antenna aperture for an acoustic profiler of the bottom soil was studied. An algorithm for synthesizing the antenna aperture was investigated along with phase distortions of the trajectory signal and their influence on the sonar image. The fundamental principles of processing the trajectory signal were considered.Conclusion. An approach to increasing the resolution of an acoustic profiler when performing search and survey tasks is proposed. The proposed design of the acoustic part of a profiling device can be used in the development of search and survey hydroacoustic devices with a high angular resolution.
Introduction. Acoustic profiling is a conventional method for studying the geological structure of the seabed. To this end, a low-frequency acoustic profiler with an operating frequency range of 1…14 kHz can be used. However, under lower operating frequencies, the difficulty of achieving the required resolution arises. The problem of improving the angular resolution of a hydroacoustic device, particularly in the direction of the carrier movement, remains to be a priority task in the search and detection of objects on the seabed, as well as the study of the bottom soil structure. Angular resolution can be improved through several approaches, including an algorithm for synthesizing the antenna aperture based on the law of the phase change of the reflected signal. This approach is relevant in the design of highresolution hydroacoustic tools.Aim. To demonstrate the possibility of constructing a bottom soil profiling device, as well as the possibility of increasing its angular resolution based on an algorithm for synthesizing the antenna aperture of an acoustic profiler.Materials and methods. The study employed the groundwork data obtained for side-scan sonars with a synthetic aperture in terms of constructing an antenna device and the methods of radio-wave excitation developed for radar systems.Results. The possibility of synthesizing the antenna aperture for an acoustic profiler of the bottom soil was studied. An algorithm for synthesizing the antenna aperture was investigated along with phase distortions of the trajectory signal and their influence on the sonar image. The fundamental principles of processing the trajectory signal were considered.Conclusion. An approach to increasing the resolution of an acoustic profiler when performing search and survey tasks is proposed. The proposed design of the acoustic part of a profiling device can be used in the development of search and survey hydroacoustic devices with a high angular resolution.
Based on the mathematical definition of a non-self-adjoint operator and the physical meaning of a specific boundary value problem, a non-self-adjoint model statement of boundary value problems in acoustics is formulated. As an example, boundary value problems for the reflection of a plane wave and a spherical wave at the interface between two liquid media are considered. A new definition of the reflection coefficient of a spherical wave is introduced. In the region of subcritical angles of incidence, the new definition takes into account the appearance in the total sound field of converging recoil waves corresponding to the eigenfunctions of the adjoint operator. In the region of supercritical angles of incidence, the participation of the eigenfunctions of two conjugate operators in the total sound field forms a nonzero power flux through the interface and its transformation into the vortex component of the intensity vector at the total internal reflection horizon. The definition of the total internal reflection horizon is given. Experimental data are presented that confirm the new definition of the reflection coefficient and the physical correctness of the non-self-adjoint model statement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.