In this paper we deal with a family of nonstandard polynomials orthogonal with respect to an inner product involving differences. This type of inner product is the so-called Δ-Sobolev inner product. Concretely, we consider the case in which both measures appearing in the inner product correspond to the Pascal distribution (the orthogonal polynomials associated to this distribution are known as Meixner polynomials). The aim of this work is to obtain a generating function for the Δ-Meixner-Sobolev orthogonal polynomials and, by using a limit process, recover a generating function for Laguerre-Sobolev orthogonal polynomials.