Inter-individual differences can inform treatment procedures and - if accounted for - have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional and connectional anatomy. Brain connections are essential to facilitate functional organisation and, when severed, cause impairments or complete loss of function. Hence the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as we determined that the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the side of the studied tract is often unreported, thus neglecting functional laterality and hemispheric asymmetries. Finally, we demonstrate that tracts, as we define them, are not usually correlated with only one, but rather multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract-function correlations might be a promising biomarker for precision medicine. It characterises variations in brain anatomy, differences in functional organisation, and predicting resilience or recovery in patients.