Gold nanoparticles (AuNPs) show potential for transfecting target cells with small interfering RNA (siRNA), but the influence of key design parameters such as the size and shape of the particle core is incomplete. This paper describes a side-by-side comparison of the in vitro response of U87 glioblastoma cells to different formulations of siRNA-conjugated gold nanoconstructs targeting the expression of isocitrate dehydrogenase 1 (IDH1) based on 13-nm spheres, 50-nm spheres, and 40-nm stars. 50-nm spheres and 40-nm stars showed much higher uptake efficiency compared to 13-nm spheres. Confocal fluorescence microscopy showed that all three formulations were localized in the endosomes at early incubation times (2 h) but that after 24 h, 50-nm spheres and 40-nm stars were neither in endosomes nor lysosomes while 13-nm spheres remained in endosomes. Transmission electron microscopy images revealed that the 13-nm spheres were enclosed and dispersed within endocytic vesicles while 50-nm spheres and 40-nm stars were aggregated, and some of these NPs were outside of endocytic vesicles. In our comparison of nanoconstructs with different sizes and shapes, while holding siRNA surface density and nanoparticle concentration constant, we found that larger particles (50-nm spheres and 40-nm stars) showed higher potential as carriers for the delivery of siRNA.