In the paper, we study and compare relative $(k,n)$ Valiron defect with the relative Nevanlinna defect for meromorphic function where $k$ and $n$ are both non negative integers on annuli. The results we proved are as follows \\1. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ and $\sum\nolimits_{a\not=\infty}^{}\delta_{0}(a,f)+\delta_{0}(\infty,f)=2.$Then\centerline{$\displaystyle\lim\limits_{R\rightarrow\infty}^{}\frac{T_{0}(R,f^{(k)})}{T_{0}(R,f)}=(1+k)-k\delta_{0}(\infty,f).$}\noi 2. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$ \smallskip\centerline{$\displaystyle 3 _{R}\delta_{0(n)}^{(0)}(a,f)+2 _{R}\delta_{0(n)}^{(0)}(b,f)+3 _{R}\delta_{0(n)}^{(0)}(c,f)+5 _{R}\Delta_{0(n)}^{(k)}(\infty ,f)\leq 5 _{R}\Delta_{0(n)}^{(0)}(\infty,f)+5 _{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 3. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$, $b$ and $c$ are three distinct complex numbers, then for any two positive integer $k$ and $n$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\delta_{0(n)}^{(0)}(c,f)\leq _{R}\Delta_{0(n)}^{(0)}(\infty,f)+2_{R}\Delta_{0(n)}^{(k)}(0,f).$} \noi 4. Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ such that $m_{0}(r,f)=S(r,f)$. If $a$ and $d$ are two distinct complex numbers, then for any two positive integer $k$ and $p$ with $0\leq k\leq p$\smallskip\centerline{$\displaystyle_{R}\delta_{0(n)}^{(0)}(d,f)+_{R}\Delta_{0(n)}^{(p)}(\infty,f)+_{R}\delta_{0(n)}^{(k)}(a,f)\leq _{R}\Delta_{0(n)}^{(k)}(\infty,f)+_{R}\Delta_{0(n)}^{(p)}(0,f)+_{R}\Delta_{0(n)}^{(k)}(0,f),$} \noi where $n$ is any positive integer.\\5.Let $f(z)$ be a transcendental or admissible meromorphic function of finite order in $\mathbb{A}(R_0),\,$ where $1<R_0\leq +\infty$ . Then for any two positive integers $k$ and $n$,\smallskip\centerline{$\displaystyle_{R}\Delta_{0(n)}^{(0)}(\infty,f)+_{R}\Delta_{0(n)}^{(k)}(0,f) \geq _{R}\delta_{0(n)}^{(0)}(0,f)+_{R}\delta_{0(n)}^{(0)}(a,f)+_{R}\Delta_{0(n)}^{(k)}(\infty,f),$}\noi where $a$ is any non zero complex number.