BackgroundInfluenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous.MethodIn this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively.ResultsIn comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry.ConclusionAfter the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can be enhanced by IL-2 as an adjuvant. Cellular immune responses may play an important role in HSI against influenza virus.