The work deals with the analysis of the multiaxial fatigue damage of a C45 steel and its relationship with the thermal energy dissipation used in the last decades to estimate the uniaxial fatigue behavior of metals. For this purpose, thin-walled samples made of quenched and tempered C45 steel were tested under completely reversed combined axial and torsional cyclic loadings with different biaxiality ratios and phase-shift angles. The analyses of the crack paths at the initiation of the failure were performed after a 50% of stiffness loss that corresponded to a crack size ranging from 10 to 20 mm; afterwards, the characteristic crack paths of each loading condition were analysed by using a digital microscope to identify the direction of the crack at the initiation. The fatigue crack initiation points were inspected using a Scanning Electron Microscope after having broken under static tensile loading all specimens previously tested under fatigue. The specific heat loss per cycle was measured during the fatigue tests by applying the cooling gradient technique. Nevertheless, the fatigue damages observed are dependent on the load condition, the Q parameter was able to collapse all the axial, torsional and multiaxial fatigue test results in a sole scatter band