Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Limited sources of fresh water necessitate the application of health policies for treatment and decontamination of human sewage for further use. A wide variety of infectious agents, including bacteria, fungi, parasites, and viruses, can be found in sewage. Enteric viruses such as hepatitis A virus (HAV) can survive the current treatments and infect susceptible hosts. Objectives: This study aimed to evaluate the HAV contamination in human sewage before and after treatment in the wastewater treatment plant of Ekbatan town in Tehran, Iran, and analyze the phylogenetic properties of the identified viruses. Methods: Over a 12-month period, we collected the wastewater samples including influent, before chlorination, and effluent, from the wastewater treatment plant of Ekbatan town in Tehran, Iran. Ribonucleic acid (RNA) extraction, complementary deoxyribonucleic acid (cDNA) synthesis, and semi-nested polymerase chain reaction (PCR) were performed to identify HAV contamination. Phylogenetic analysis was performed to investigate subgenotypes of the virus. Results: HAV was detected in all influents and samples before chlorination, while the virus was detected in 50% of the effluent samples. All detected viruses belonged to subgenotype IB. Conclusions: Investigating the presence of HAV in sewage provides a general picture of the virus spread in the population of interest. HAV was detected in all influent samples, indicating that the infection is endemic in this area all year round. This also indicates the inability of the current treatment protocols in virus removal, which can be a threat to the public health.
Background: Limited sources of fresh water necessitate the application of health policies for treatment and decontamination of human sewage for further use. A wide variety of infectious agents, including bacteria, fungi, parasites, and viruses, can be found in sewage. Enteric viruses such as hepatitis A virus (HAV) can survive the current treatments and infect susceptible hosts. Objectives: This study aimed to evaluate the HAV contamination in human sewage before and after treatment in the wastewater treatment plant of Ekbatan town in Tehran, Iran, and analyze the phylogenetic properties of the identified viruses. Methods: Over a 12-month period, we collected the wastewater samples including influent, before chlorination, and effluent, from the wastewater treatment plant of Ekbatan town in Tehran, Iran. Ribonucleic acid (RNA) extraction, complementary deoxyribonucleic acid (cDNA) synthesis, and semi-nested polymerase chain reaction (PCR) were performed to identify HAV contamination. Phylogenetic analysis was performed to investigate subgenotypes of the virus. Results: HAV was detected in all influents and samples before chlorination, while the virus was detected in 50% of the effluent samples. All detected viruses belonged to subgenotype IB. Conclusions: Investigating the presence of HAV in sewage provides a general picture of the virus spread in the population of interest. HAV was detected in all influent samples, indicating that the infection is endemic in this area all year round. This also indicates the inability of the current treatment protocols in virus removal, which can be a threat to the public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.