1981
DOI: 10.2307/1935850
|View full text |Cite
|
Sign up to set email alerts
|

The Short-Run Residential Demand for Electricity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
37
0

Year Published

1986
1986
2015
2015

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 60 publications
(39 citation statements)
references
References 6 publications
2
37
0
Order By: Relevance
“…An alternative approach to modeling electricity demand under block rate structures has been to develop an instrumental variable for the price of electricity and to use this instrument in place of the price variable in estimation (e.g., Barnes, Gillingham, and Hagemann 1981;Hausman, Kinnucan, and McFadden 1979;Hausman and Trimble 1984). For example, one might form an instrument for the marginal electricity price, P,, by first estimating the RF model in Equation (5).…”
Section: Instrumental Variable Estimationmentioning
confidence: 99%
“…An alternative approach to modeling electricity demand under block rate structures has been to develop an instrumental variable for the price of electricity and to use this instrument in place of the price variable in estimation (e.g., Barnes, Gillingham, and Hagemann 1981;Hausman, Kinnucan, and McFadden 1979;Hausman and Trimble 1984). For example, one might form an instrument for the marginal electricity price, P,, by first estimating the RF model in Equation (5).…”
Section: Instrumental Variable Estimationmentioning
confidence: 99%
“…The output demand elasticities with respect to the per-unit price (qp ) are consistent with the range of estimates presented in the demand surveys of Taylor and Bohi [39;7]. The alternative approach is to measure L' as a rate structure premium (RSP) as in Barnes et al where the per-unit price is the marginal price in the mean consumption block and the RSP is the difference between the total expenditure for the mean consumption level and what the total expenditure would have been if all units had been sold at the marginal price [2]. However, it does make intuitive sense that El is less elastic in the residential class as compared to the industrial and commercial classes.…”
Section: Estimation Resultsmentioning
confidence: 99%
“…Given h' is distributed according to f'(h), membership (M') and aggregate output (Q1) are defined as M'(P,Li) = J f'' (h)dh, (2) and Q1(P,L'1) = l q(PL', h)f '(h)dh. (3) Assuming that income effects are equal across inframarginal households, equation (4) follows.…”
Section: A Model Of Regulatory Pricingmentioning
confidence: 99%
“…Data Elasticities (long run: LR, short run: SR) Price Income Houthakker (1951) 1937e1938, Great Britain À0.89(SR) 1.17(SR) Wilson (1971) 1966, Western United States and California, USA À1.33(SR) À0.46(SR) Berman et al (1972) 1961, USA À0.25(SR), À1.3(LR) e Wilder and Willenborg (1975) 1973, Columbia, South Carolina, USA À1.31(SR) 0.34(SR) Parti and Parti (1980) 1975, San Diego, USA À0.58(SR) 0.15(LR) Barnes et al (1981) 1972e1973, USA À0.55(SR) 0.2(SR) Dubin and McFadden (1984) 1975, Washington, USA À0.19(SR), À0.22(LR) 0.02(SR), 0.06(LR) Garbacz (1984) 1978e79, USA À0.7(SR) 0.4(SR) Baker et al (1989) 1972e83, Great Britain À0.75(LR) 0.13(LR) Munley et al (1990) 1978e79, Washington D.C., USA À0.43(SR) 0.24(SR) Maddock et al (1992) 1986, Medellin, Colombia, USA À0.46(SR) 0.3(SR) Herriges and King (1994) 1984e85, Wisconsin, USA À0.02(SR) e Bernard et al (1996) 1989, Quebec, Canada À0.93(SR), À1.29(LR) 0.09(SR), 0.08(LR) Filippini (1999) 1987e90, Switzerland À0.30(LR) 0.33(LR) Nesbakken (2001) 1990, Norway À0.55(SR) 0.13(SR) Filippini and Pachauri (2004) 1993e94, Urban, India À0.5(LR) 0.6(LR) Reiss and White (2005) 1993e97, California, USA À0.39(SR) 0.00(SR) Labandeira et al (2006) 1973e95, Spain À0.79(LR) 0.81(LR) Yoo et al (2007) 2005, Seoul, South Korea À0.24(SR) 0.06(SR) Khattak et al (2010) 2009, Peshawar, Pakistan À0.90(SR) e Alberini et al (2011) 1997e2007, USA À0.73(SR), À0.81(LR) 0.02(SR), 0.05(LR) Bernard et al (2011) 1989e2002, Quebec, Canada À0.51(SR), À1.32(LR) 0.08(SR), 0.2(LR) World Bank (2011) 2008e2009, Turkey À0.48(SR) 0.13(SR) Labandeira et al (2012) 2005e2007, Spain À0.24(SR) 0.7(SR) Carter et al (2012) 1997, Barbados À0.77(SR) 0.01(SR) Zhou and Teng (2013) 2007e2009, Sichuan, China À0.35(SR) 0.14(SR) Fell et al (2014) 2004e06,USA À0.5 (SR) 0.01(SR) Ito (2014) 1999e2008, California, USA À0.11(SR), À0.2(LR) e …”
Section: Studymentioning
confidence: 99%