We present new, more precise measurements of the mass and distance of our Galaxy's central supermassive black hole, Sgr A * . These results stem from a new analysis that more than doubles the time baseline for astrometry of faint stars orbiting Sgr A * , combining 2decades of speckle imaging and adaptive optics data. Specifically, we improve our analysis of the speckle images by using information about a star's orbit from the deep adaptive optics data (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013) to inform the search for the star in the speckle years (1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005). When this new analysis technique is combined with the first complete re-reduction of Keck Galactic Center speckle images using speckle holography, we are able to track the short-period star S0-38 (K-band magnitude=17, orbital period=19 yr) through the speckle years. We use the kinematic measurements from speckle holography and adaptive optics to estimate the orbits of S0-38 and S0-2 and thereby improve our constraints of the mass (M bh ) and distance (R o ) of Sgr A * : M bh = (4.02±0.16±0.04) ×10 6 M e and 7.86±0.14±0.04 kpc. The uncertainties in M bh and R o as determined by the combined orbital fit of S0-2 and S0-38 are improved by a factor of 2 and 2.5, respectively, compared to an orbital fit of S0-2 alone and a factor of ∼2.5 compared to previous results from stellar orbits. This analysis also limits the extended dark mass within 0.01 pc to less than 0.13×10 6 M e at 99.7% confidence, a factor of 3 lower compared to prior work.