Background:Quality control (QC), quality assurance, and standardization are crucial for modern diagnostic testing in the field of medical microbiology. The need for efficient QC to ensure accurate laboratory results, treatment, and infection prevention has led to significant efforts in standardizing assay reagents and workflows. External quality assessment (EQA) schemes, like those offered by INSTAND, play a vital role in evaluating in-house and commercial routine diagnostic assays, regarded as mandatory by national and global guidelines. The recent impact of polymerase chain reaction/nucleic acid amplification technology (PCR/NAAT) assays in medical microbiology requires that high-performing assays be distinguished from inadequately performing ones, especially those made by inexperienced suppliers.Objectives:The study assesses the evolving diagnostic performance trends over 2 decades for the detection of EHEC/STEC, Borrelia (B.) burgdorferi, and MRSA/cMRSA. It explores the historical context of assay utilization, participant engagement, and rates of correct results in EQA schemes. The research seeks to identify patterns in assay preferences, participant proficiency, and the challenges encountered in detecting emerging variants or clinical strains.Results:The study highlights the decline in in-house PCR assay usage, the emergence of new diagnostic challenges, and educational aspects within EQA schemes. Specific examples, such as the inclusion, in certain EQA surveys, of EHEC strains carrying stx-2f or B. miyamotoi, highlight the role of EQAs in increasing awareness and diagnostic capabilities. Advancements in MRSA detection, especially through the adoption of commercial assays, demonstrate the impact that technology evolution has had on diagnostic performance.Conclusion:Achieving excellence in diagnostic molecular microbiology involves a multifaceted approach, including well-evaluated assays, careful instrumentation selection, and structured training programs. EQA schemes contribute significantly to this pursuit by providing insights into the evolving diagnostic landscape and identifying areas for improvement in the diagnostic workflow as well as in PCR/NAAT assay design.