To infect their mammalian hosts, Fasciola hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum, and penetrate the liver. After migrating through and feeding on the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and produce eggs. Here we integrated a transcriptomics and proteomics approach to profile Fasciola secretory proteins that are involved in host-pathogen interactions and to correlate changes in their expression with the migration of the parasite. Prediction of F. hepatica secretory proteins from 14,031 expressed sequence tags (ESTs) available from the Wellcome Trust Sanger Centre using the semiautomated EST2Secretome pipeline showed that the major components of adult parasite secretions are proteolytic enzymes including cathepsin L, cathepsin B, and asparaginyl endopeptidase cysteine proteases as well as novel trypsinlike serine proteases and carboxypeptidases. Proteomics analysis of proteins secreted by infective larvae, immature flukes, and adult F. hepatica showed that these proteases are developmentally regulated and correlate with the passage of the parasite through host tissues and its encounters with different host macromolecules. Proteases such as FhCL3 and cathepsin B have specific functions in larvae activation and intestinal wall penetration, whereas FhCL1, FhCL2, and FhCL5 are required for liver penetration and tissue and blood feeding. Besides proteases, the parasites secrete an array of antioxidants that are also highly regulated according to their migration through host tissues. However, whereas the proteases of F. hepatica are secreted into the parasite gut via a classical endoplasmic reticulum/Golgi pathway, we speculate that the antioxidants, which all lack a signal sequence, are released via a non-classical trans-tegumental pathway. Fasciola hepatica is a helminth (worm) parasite with a worldwide distribution. Although traditionally regarded as a parasite of livestock, particularly sheep and cattle, that results in a large economic loss to the agricultural community it has recently emerged as an important human infection in many regions of the world, including South America, Iran, Egypt, and mainland South-East Asia (1). Dormant larvae contained within cysts adhere to vegetation and emerge as infective juveniles (newly excysted juveniles (NEJs)) 1 in the duodenum following ingestion by animals or humans. They infect their hosts by rapidly penetrating the intestinal wall and entering the peritoneal cavity where they break through the liver capsule. After 8 -12 weeks of consistent burrowing, feeding, and growth within the liver parenchyma they move to their final destination within the bile ducts where they mature and produce enormous numbers of eggs (2). The two distinct clinical phases of fasciolosis are directly related to the migration of the parasites: acute fasciolosis, which manifests as fever, abdominal pain, weight loss, and hepatomegaly, is associated with...