2021
DOI: 10.17762/turcomat.v12i3.938
|View full text |Cite
|
Sign up to set email alerts
|

The Similarity of Essay Examination Results using Preprocessing Text Mining with Cosine Similarity and Nazief-Adriani Algorithms

Abstract: Exams are one way to measure the level of students' ability to participate in learning. One type of exam given to students is the essay type. This study focuses on making automatic assessments for essay-type exams using cosine similarity. This method has several stages such as folding Case, tokenizing, filtering, stemming, analyzing, weighing of words in documents with cosine similarity. The stemming process uses the Nazief & Adriani algorithm. The results of this study are to conclude that the choice of w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 3 publications
0
1
0
1
Order By: Relevance
“…Namun pada penelitian ini, algoritma similaritas digunakan untuk menentukan nilai mahasiswa dengan melihat kemiripan jawaban soal dengan jawaban kunci. Algoritma yang terbaik adalah algoritma yang menghasilkan nilai jawaban yang terdekat dengan jawaban yang dilakukan oleh manusia [18].…”
Section: Pendahuluanunclassified
“…Namun pada penelitian ini, algoritma similaritas digunakan untuk menentukan nilai mahasiswa dengan melihat kemiripan jawaban soal dengan jawaban kunci. Algoritma yang terbaik adalah algoritma yang menghasilkan nilai jawaban yang terdekat dengan jawaban yang dilakukan oleh manusia [18].…”
Section: Pendahuluanunclassified
“…It helps subsequent stages focus solely on words with semantic weight within the text. Furthermore, stemming identifies root forms from the filtered words [48]. It helps reduce dimensionality by grouping words with the same root, even if they appear in different grammatical forms in the text.…”
Section: Data and Text Mining: An Overviewmentioning
confidence: 99%