This paper studies the Prasad conjecture for the special orthogonal group \mathrm{SO}_{3,3}.
Then we use the local theta correspondence between \mathrm{Sp}_{4} and \mathrm{O}(V) to study the \mathrm{Sp}_{4}-distinction problems over a quadratic field extension E/F and \dim V=4 or 6.
Thus we can verify the Prasad conjecture for a square-integrable representation of \mathrm{Sp}_{4}(E).