In the present article, fatigue properties (pure and fretting) of magnesium alloys (AM60) under cyclic bending loading were compared. For this objective, a rotary fatigue testing device was utilized with a fretting module on standard cylindrical samples under bending loads with zero means stress. The fretting fatigue condition decreased fatigue lifetime compared with pure fatigue but in an amazing Epsilon-shaped trend. Comparatively speaking to the state of pure fatigue, the fatigue lifetime of the fretting fatigue condition reduced by 91.0% and 44.8%, respectively, between the lowest level of stress (80 MPa) and the greatest level of stress (120 MPa). To study the fracture behavior and the fractography analysis, field-emission scanning electron microscopy (FESEM) was utilized. In general, since both quasi-cleavage and cleavage were seen; therefore, the fracture behavior for all samples was brittle. In both test conditions (fretting fatigue and pure fatigue), at higher stress levels, the average crack length was higher than at low-stress levels. In addition, the number of cracks (in high- and low-stress levels) was observed to be less in fretting fatigue conditions than in pure fatigue conditions, but the average crack length in fretting fatigue conditions in high-stress levels and low-stress levels was 212.82% and 259.47% higher than the average crack length under the pure fatigue condition, respectively.