Soft tissue sarcomas (STS) are considered non-immunogenic, although distinct entities respond to antitumor agents targeting the tumor microenvironment. This study's aims were to investigate relationships between tumor-infiltrating immune cells and patient/tumor-related factors, and assess their prognostic value for local recurrence (LR), distant metastasis (DM), and overall survival (OS). One-hundred-eighty-eight STS-patients (87 females [46.3%]; median age: 62.5 years) were retrospectively analyzed. Tissue microarrays (in total 1266 cores) were stained with multiplex immunohistochemistry and analyzed with multispectral imaging. Seven cell types were differentiated depending on marker profiles (CD3+, CD3+ CD4+ helper, CD3+ CD8+ cytotoxic, CD3+ CD4+ CD45RO+ helper memory, CD3 + CD8+ CD45RO+ cytotoxic memory T-cells; CD20 + B-cells; CD68+ macrophages). Correlations between phenotype abundance and variables were analyzed. Uni-and multivariate Fine&Gray and Cox-regression models were constructed to investigate prognostic variables. Model calibration was assessed with C-index. IHC-findings were validated with TCGA-SARC gene expression data of genes specific for macrophages, T-and B-cells. B-cell percentage was lower in patients older than 62.5 years (p = .013), whilst macrophage percentage was higher (p = .002). High B-cell (p = .035) and macrophage levels (p = .003) were associated with increased LR-risk in the univariate analysis. In the multivariate setting, high macrophage levels (p = .014) were associated with increased LR-risk, irrespective of margins, age, gender or B-cells. Other immune cells were not associated with outcome events. High macrophage levels were a poor prognostic factor for LR, irrespective of margins, B-cells, gender and age. Thus, anti-tumor, macrophage-targeting agents may be applied more frequently in tumors with enhanced macrophage infiltration.