In the post‐genomic era, the paradigm for drug discovery has changed, as every gene may become a potential target. Genetic diseases provide a special window into gene target selection. This approach is being applied to migraine making use of the genes and mutations causing familial hemiplegic migraine (FHM). FHM is caused by missense mutations in CACNA1A, altering a neuronal P/Q Ca2+ channel, in ATP1A2, altering α2 Na,K‐ATPase, and in SCN1A, altering a neuronal sodium channel. These genes provide insights into migraine pathogenesis that likely extend to other forms of migraine as well. Since the three FHM genes are only co‐expressed in neurons, FHM is a neuronal, not a vascular, disease and because they all encode ion transport proteins, FHM is a neuronal channelopathy—meaning meta‐stable neuronal hyperexcitability is the substrate of migraine, much as it is for genetic epilepsy syndromes. This similarity is reinforced, since different mutations of all three FHM genes can produce seizure syndromes. This has implications for drug discovery in that seizure medications already known to modulate the FHM channel mechanisms warrant more targeted development, and that drugs targeted to vascular headaches, such as the historically effective triptans, or experimental botulinum toxin, may well work by similar nonvascular mechanisms. Finally, in model neurogenetic systems such as Caenorhabditis elegans, the FHM genes also provide both a comprehensive means to discover all genes involved in their signaling pathway—genes potentially involved in common forms of the disease, and an in vivo whole animal means to screen rapidly for novel therapeutics. Drug Dev Res 68:432–440, 2007. © 2008 Wiley‐Liss, Inc.