High-energy astrophysics is a relatively young scientific field, made
possible by space-borne telescopes. During the half-century history of x-ray
astronomy, the sensitivity of focusing x-ray telescopes-through finer angular
resolution and increased effective area-has improved by a factor of a 100
million. This technological advance has enabled numerous exciting discoveries
and increasingly detailed study of the high-energy universe-including accreting
(stellar-mass and super-massive) black holes, accreting and isolated neutron
stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot
thermal plasma in clusters of galaxies. As the largest structures in the
universe, galaxy clusters constitute a unique laboratory for measuring the
gravitational effects of dark matter and of dark energy. Here, we review the
history of high-resolution x-ray telescopes and highlight some of the
scientific results enabled by these telescopes. Next, we describe the planned
next-generation x-ray-astronomy facility-the International X-ray Observatory
(IXO). We conclude with an overview of a concept for the next next-generation
facility-Generation X. The scientific objectives of such a mission will require
very large areas (about 10000 m2) of highly-nested lightweight
grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular
resolution. Achieving this angular resolution with lightweight mirrors will
likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics",
part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-