Because of its high phosphorus (P) demands, it is likely that the abundance, distribution, and N-fixing capacity of Alnus in boreal forests are tightly coupled with P availability and the mobilization and uptake of soil P via ectomycorrhizal fungi (EMF). We examined whether Alnus shifts EMF communities in coordination with increasingly more complex organic P forms across a 200-year-old successional sequence along the Tanana River in interior Alaska. Root-tip activities of acid phosphatase, phosphodiesterase, and phytase of A. tenuifolia-associated EMF were positively intercorrelated but did not change in a predictable manner across the shrub, to hardwood to coniferous forest successional sequence. Approximately half of all Alnus roots were colonized by Alnicola and Tomentella taxa, and ordination analysis indicated that the EMF community on Alnus is a relatively distinct, host-specific group. Despite differences in the activities of the two Alnus dominants to mobilize acid phosphatase and phosphodiesterase, the root-tip activities of P-mobilizing enzymes of the Alnus-EMF community were not dramatically different from other co-occurring boreal plant hosts. This suggests that if Alnus has a greater influence on P cycling than other plant functional types, additional factors influencing P mobilization and uptake at the root and/or whole-plant level must be involved.