Lake Chad, in the Sahelian zone of west-central Africa, provides food and water to ~50 million people and supports unique ecosystems and biodiversity. In the past decades, it became a symbol of current climate change, held up by its dramatic shrinkage in the 1980s. Despites a partial recovery in response to increased Sahelian precipitation in the 1990s, Lake Chad is still facing major threats and its contemporary variability under climate change remains highly uncertain. Here, using a new multi-satellite approach, we show that Lake Chad extent has remained stable during the last two decades, despite a slight decrease of its northern pool. Moreover, since the 2000s, groundwater, which contributes to ~70% of Lake Chad’s annual water storage change, is increasing due to water supply provided by its two main tributaries. Our results indicate that in tandem with groundwater and tropical origin of water supply, over the last two decades, Lake Chad is not shrinking and recovers seasonally its surface water extent and volume. This study provides a robust regional understanding of current hydrology and changes in the Lake Chad region, giving a basis for developing future climate adaptation strategies.