SummaryBACKGROUNDThe potential reappearance and/or expansion of vector‐borne diseases is one of the terrifying issues awaiting humanity in the context of climate change. The presence of competent Anopheles vectors, as well as suitable environmental circumstances, may result in the reemergence of autochthonous Malaria, after years of absence. In Morocco, international travel and migration movements from Malaria‐endemic areas have recently increased the number of imported cases, raising awareness of Malaria's possible reintroduction.Using Machine learning we developed model predictions, under current and future (2050) climate, for the prospective distribution of An. claviger, An. labranchiae, An. multicolor, and An. sergentii implicated or incriminated in Malaria transmission.RESULTSAll modeled species are expected to find suitable habitats and have the potential to become established in the northern and central parts of the country, under present‐day conditions. Distinct changes in the distributions of the four mosquitoes are to be expected under climate change. Even under the most optimistic scenario, all investigated species are likely to acquire new habitats that are now unsuitable, placing further populations in danger. We also observed a northward and altitudinal shift in their distribution towards higher altitudes.CONCLUSIONClimate change is expected to expand the potential range of malaria vectors in Morocco. Our maps and predictions offer a way to intelligently focus efforts on surveillance and control programs. To reduce the threat of human infection, it's crucial for public health authorities, entomological surveillance teams, and control initiatives to collaborate and intensify their actions, continuously monitoring areas at risk.This article is protected by copyright. All rights reserved.