Variability in the vascular plant species composition of four stages of primary succession was investigated on 39 glacier forelands in the Jotunheim and Jostedalsbreen regions of south-central Norway. The relative frequencies of species were recorded in the pioneer zone adjacent to the glacier snout, in vegetation on terrain ages of c. 70 years and c. 250 years, and in mature vegetation outside the foreland (approximately 10,000 years since deglaciation). Sorensen dissimilarity, non-metric multidimensional scaling, and cluster analysis were used to compare the relative variability in species composition of these four stages and to identify patterns of succession within four altitudinal belts. Indicator species analysis identified characteristic species within each stage. Variation partitioning was used to quantify the relative influence of altitude and continentality on species composition.Variability increased between pioneer and later successional stages at all but the highest altitudes, which showed no significant difference in variability between stages. The results suggest that up to an altitude of around 1600 m succession on glacier forelands follows a divergent trajectory: above this altitude little successional change occurs. Rate of successional change also varies with altitude: below about 1000 m, in the sub-alpine belt, the transition from pioneer vegetation to birch woodland occurs within 70 years; above about 1600 m in the high-alpine belt, herbaceous pioneer vegetation can persist indefinitely; at intermediate altitudes, the dwarf-shrub and snowbed vegetation types of the low-and mid-alpine belts develop within c. 250 years. The explanatory power of altitude and continentality on compositional variation and the relative importance of altitude increased with successional stage.