In the last decade, a number of cryptic species have been discovered in lichenized fungi, especially in species with a cosmopolitan or disjunctive distribution. Parmelia saxatilis is one of the most common and widely distributed species. Recent molecular studies have detected two species, P. ernstiae and P. serrana, within P. saxatilis s. lat., suggesting the existence of considerable genetic diversity that may not yet be expressed at the phenotypic level. Due to the complexity in the P. saxatilis s. lat. group, we used this as a model to study the species boundary and identify cryptic lineages. We used Phylogenetic (Bayes, ML and MP) and genetic distance approaches to analyze ITS and β-tubulin sequences. Our results confirm the existence of another cryptic lineage within P. saxatilis s. lat. This lineage is described herein as a new species, P. mayi. It forms an independent, strongly supported, monophyletic lineage, distantly related to the morphologically similar species P. ernstiae, P. saxatilis and P. serrana. Morphologically, it is indistinguishable from P. saxatilis but the new species is separated by molecular, bioclimatic, biogeographic and chemical characters. At present, P. mayi appears to have a restricted distribution in the northern Appalachian mountain territories of North America. It is found in climatic conditions ranging from hemiboreal and orotemperate to cryorotemperate ultrahyperhumid bioclimates.