Abstract:We consider eigenvalues of a quantized cat map (i.e. hyperbolic symplectic integer matrix), cut off in phase space to include a fixed point as its only periodic orbit on the torus. We prove a simple formula for the eigenvalues on both the quantized real line and the quantized torus in the semiclassical limit as h → 0. We then consider the case with no fixed points, and prove a superpolynomial decay bound on the eigenvalues.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.