Safety speeds estimation, as an indispensable link in the development of the aided or automatic drive, receives wide attention recently. Due to uncertain disturbances of vehicle driving, it is a challenging task to estimate the safety speed credibly. This work proposes a modified estimation approach to predict the turning safety speed by combining the static drive safety evaluation with the dynamic vehicle speed calculation. First, the driving safety state is evaluated considering the coupling of driver-vehicle-road-environment, where a comprehensive evaluation is obtained by combing the analytic hierarchy process and entropy weight analysis method. Then, a turning critical speed is calculated based on the vehicle driving dynamics considering both sideslip and rollover. The estimation of turning safety speed is achieved by modifying the critical speed with a safety correction factor obtained from the driving safety state evaluation. Finally, cases discussion on driving safety states evaluation, as well as the critical speed verification and safety speed analysis, are carried out. The results verify the validity of the driving safety state evaluation and critical speed calculation. The safety speeds have a reasonable safety margin according to the driving safety state evaluation. The maximum differences between the safety speeds and critical speeds are about 26.45% for buses and 26.39% for cars under low adhesion conditions, showing sufficient reliability for safety speed estimation.