Despite the advancements in vaccination research and practices, influenza viruses remain a global health concern. Inducing a robust immune response by vaccination is especially challenging in the elderly, the immunocompromised, and persons with chronic illnesses. Polysaccharides derived from food may act as a safe and readily accessible means to boost the immune system during vaccination. In this study, we investigated whether crude polysaccharides derived from carrot pomace (CPP) could stimulate innate immune cell function and promote influenza vaccine immunogenicity. In bone marrow-derived dendritic cells (BMDCs), CPP increased the fraction of CD11c+MHCII+ cells and the expression of co-stimulatory molecules CD40 and CD80, indicative of enhanced maturation and activation. Functionally, CPP-treated BMDCs promoted inflammatory cytokine production in splenic lymphocytes. In a mouse model of immunosuppression induced by cyclophosphamide, animals given CPP before and after an influenza vaccine challenge showed increased frequencies of dendritic cells and natural killer cells in the spleen, in addition to the recovery of vaccine-specific antibody titers. Moreover, innate myeloid cells in CPP-fed mice showed evidence of phenotypic modification via markedly enhanced interleukin(IL)-12 and interferon(IFN)-γ production in response to lipopolysaccharide(LPS) stimulation ex vivo. Our findings suggest that the administration of carrot pomace polysaccharides can significantly enhance the efficacy of influenza vaccination.