An empirical solution to abnormal potential responses, showing peaks of emf, of commercial Cu2+- and Cd2+-selective electrodes with solid-state membranes was proposed for aqueous solutions of CuCl2 and CdI2. The two-step processes of Mn+ + Yn? (s: solid phase) MY(s) and MY(s) + 2X? X2MY2?(s) (n = 1, 2) at a test solution/electrode-interface were considered as a model. Here, Mn+, Yn?, and X? refer to a divalent or univalent cation, functional groups of electrode materials, and a halide ion (X? = Cl?, Br?, I?), respectively. By applying electrochemical potentials to these processes at n = 2, we derived an equation. Regression analyses based on the equation reproduced well the plots of emf versus log 2(*[M]t) for the Cd(II) and Cu(II) systems: *[M]t denotes a total concentration of species relevant to M2+ in a bulk of the aqueous solution. Also, we obtained log Ks(CdBr2) = 4.28 ? 0.22, log Ks(CdI2) = 6.98 ? 0.05, log Ks(CuCl2) = 3.96 ? 0.09, and log Ks(CuBr2) = 11.4 at 25?C. The magnitude in ?log Ks reflected that in the logarithmic solubility product, log {*[M2+](*[X?])2}, for bulk water, where *[M2+] or *[X?] denotes a molar concentration of the bulk solu-tion of M2+ or X? at equilibrium, respectively. Moreover, a mixture of CuSO4 with NaCl at the molar ratio of 1:1 yielded a plot similar to that of CuCl2